Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 253-254: 107008, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095854

RESUMO

We assessed the aptitude of cesium (Cs+) binding by Keggin type polyoxometalates (POMs) and compared the results with the Cs+ binding by sodium tetrakis(4-fluorophenyl)-borate (Na-TFPB). In this work, we aimed to establish a system to treat radioactive Cs+ contaminated soil with POMs economically. We evaluated the effect of initial Cs+ concentration (0.1M) and precipitant (POMs and TFPB) concentrations (0.01M) on Cs+ precipitation. Our comparison of Cs+ precipitation by three different POMs and TFPB was obtained by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). We synthesized POMs molybdovanadophosphoric acid, H5PMo10V2O40 (MVPA), and silicotungstic acid, H4SiW12O40 (STA), and used commercially available phosphotungstic acid, H3PW12O40 (PTA), and TFPB. Cs-doped pure phase vermiculite was also used to demonstrate the extraction potential of Cs+ by TFPB, STA, and PTA. All the POMs and corresponding Cs-bound POMs were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray powder diffraction (XRD). In this simulation study, we demonstrated that the Cs+ removal by POMs is much more effective than TFPB and could be a promising method for the treatment of radiocesium contaminated soil.


Assuntos
Boratos , Monitoramento de Radiação , Silicatos de Alumínio , Ânions , Césio , Íons , Ácido Fosfotúngstico , Polieletrólitos , Sódio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...